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R. C. N. L

Defense Evaluation and Research Agency, Haslar, Gosport PO12 2AG, U.K.

(Received 16 October 1996, and in final form 30 January 1998)

Machines on board a ship are mounted on decks, which are supported by bulkheads from
the hull. This paper studies the vibration transmission characteristics along the transmission
path of deck–bulkhead–hull. The model used in this study consists of two infinite parallel
plates, representing a deck and a hull, connected by a single bulkhead. The excitation force
is applied on the top plate, in the plane of the bulkhead. Thus, only in-plane waves exist
in the bulkhead. The two infinite plates are assumed to have pure bending waves only. The
analyses show that at low frequencies the two parallel plates are strongly coupled. At
frequencies above the first resonance of the bulkhead due to shear waves, the two plates
become uncoupled. The top plate, which the excitation is acted upon, exhibits the behaviour
of a single infinite plate. The bottom plate, however, can be treated as a series of
independent beam elements running perpendicular to the bulkhead.

1. INTRODUCTION

Machines on board a ship are mounted on decks which are supported by bulkheads. The
bulkheads will either be the supports between decks, or between deck and hull. Inevitably,
the bulkheads will be one of the transmission paths for the vibrations originated from the
machines. References [1–3] studied the longitudinal and flexural vibration transmission
through a right-angled joint formed by two plates. This paper studies the characteristics
of a bulkhead in the vibration transmission from a deck to a hull. The present study only
considers a point excitation on the deck, directly above a bulkhead as shown in Figure 1.
This is equivalent to a case where the bulkhead is directly underneath a support of a
machine. The seating for the machine will therefore have a high impedance for vibration
isolation purpose. The case of a moment excitation was a separate study and its findings
will be presented in the future.

Kurtze and Watters [4] studied the impedance of sandwich plates with periodic wall
structure. However, their analysis assumed that the structures linking the two outer skins
are rigid because the gap between the skins was small. Such assumption will not be valid
when bulkheads between decks and hulls are concerned. The model used in this study
consists of two parallel infinite plates connected by a single bulkhead. The excitation force
was restricted to the plane of the bulkhead. Therefore, only in-plane wave motions exist
in the bulkhead. The two parallel plates are assumed to have pure bending waves. The
bottom plate is treated as an orthotropic plate to take into account that it is strengthened
by stiffeners. This is normally the case for the hull of a ship.

The whole model was divided into three subsystems, two individual infinite plates and
an infinite strip. The mobility method was used in coupling the three subsystems together.
Since line contacts rather than point contacts are involved in the model, the coupling is
performed in the wavenumber domain along the length of the connections. The model was
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Figure 1. Model of Deck–Bulkhead–Hull.

further simplified by treating the top and bottom plates as two series of independent beam
elements running perpendicular to the connections, and the bulkhead treated as a beam
with shear waves only. These two simplifications give similar results for low frequencies,
when the two plates are strongly coupled together.

2. MODEL OF SHIP STRUCTURE

The model used in this study consists of two infinite plates connected by a single
bulkhead as shown in Figure 1. The top plate is assumed to be homogeneous of thickness
h1, a mass per unit area m1, and a bending rigidity D1. Whereas, the bottom plate is
assumed to be orthotropic with an equivalent thickness h2, a geometrically averaged mass
per unit area m2, and the bending rigidities in the x and z directions as Dx and Dz

respectively. The bulkhead is homogeneous with a thickness b, a height l, and a mass per
unit area mb . The bulkhead lies in the x–y plane. A normal excitation force is applied at
the top plate at point A, which is in the plane of the bulkhead. The point A falls in line
with the origin of the x–z plane. Point B is a point on the bottom plate directly under
Point A. This study concentrates on the responses at points A and B with respect to a
normal force at point A.

Although, in general, decks are supported by a number of bulkheads. If the bulkheads
are assumed to be widely spaced and the plates are heavily damped, no standing waves
will be established on the plates between bulkheads. Therefore, from the viewpoints at A
and B, the top and bottom plates can then be treated as two infinite plates.

3. POINT AND TRANSFER ACCELERANCE IN VACUUM

The analysis of the model was carried out by dividing the model into three
subsystems—top plate, bulkhead and the bottom plate, and then coupling them together
using the mobility method. It is necessary to express the responses of the subsystems in
the wavenumber, kx , domain because the subsystems are coupled together along a line.
The Fourier transform pair for the space, x, and wavenumber, kx , is defined as:

g(kx )=g
a

−a

eikxxf(x) dx; f(x)=
1
2p g

a

−a

e−ikxxg(kx ) dkx
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and the Fourier transform pair for the time, t, and frequency, v, is defined as:

g(v)=g
a

−a

e−ivtf(t) dt; f(t)=
1
2p g

a

−a

eivtg(v) dv.

These definitions correspond to the convention of ei(vt− kxx).
Consider the uncoupled model with an external applied stress distribution, se (kx , v), on

the top plate as shown in Figure 2. The displacement at the top plate, w1(kx , v), along
the x-axis at location 1 along the x-axis is governed by equation (1)

ẅ1(kx , v)=
−k2

B

4m1 $ 1
(k2

x − k2
B )1/2 −

1
(k2

x + k2
B )1/2%(se (kx , v)− s1(kx , v))

=−v2I1(kx , v)(se (kx , v)− s1(kx , v)). (1)

The stresses in the bulkhead at location 2 and 3 are given by

s2(kx , v)= bAp (kx , v)ẅ2(kx , v)− bAtr (kx , v)ẅ3(kx , v) (2)

s3(kx , v)=−bAp (kx , v)ẅ3(kx , v)+ bAtr (kx , v)ẅ2(kx , v) (3)

where Ap (kx , v) and Atr (kx , v) are the direct and transfer apparent masses
(stress/acceleration) of the bulkhead (Appendix A). Equations (2) and (3) assume that the
thickness of the bulkhead, b, is small and that the displacement and stress will be uniform
across the thickness.

The displacements of the bottom orthotropic plate, w4(kx , v), at locations along the
x-axis are governed by the equation:

ẅ4(kx , v)=
−kBxkBz

4m2 $ 1
(k2

x − k2
Bx )1/2 −

1
(k2

x + k2
Bx )1/2%s4(kx , v)

=−v2I4(kx , v)s4(kx , v). (4)

Figure 2. Block diagram of uncoupled system.
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The boundary conditions for locations 1, 2, 3 and 4 once they are coupled together are:

s1(kx , v)= s2(kx , v); s3(kx , v)= s4(kx , v);

w1(kx , v)=w2(kx , v); w3(kx , v)=w4(kx , v). (5)

Applying the boundary conditions to equations (1)–(4), the direct and transfer accelerances
(acceleration/stress), Id (kx , v), and It (kx , v) for the coupled system become:

Id (kx , v)= ẅ1(kx , v)/se (kx , v)= [−bAp (kx , v)v4I1(kx , v)I4(kx , v)+v2I1(kx , v)]/X (6)

and

Itr (kx , v)= ẅ4(kx , v)/se (kx , v)=−bAtr (kx , v)v4I1(kx , v)I4(kx , v)/X (7)

with the characteristic function X, given by

X=v4I1(kx , v)I4(kx , v)b2[A2
tr (kx , v)−A2

p (kx , v)]

+ v2[I1(kx , v)+ I4(kx , v)]bAp (kx , v)−1. (8)

The stresses at the junctions are

s1(kx , v)
se (kx , v)

=1−
bAp (kx , v)v2I4(kx , v)−1

X
(9)

and

s4(kx , v)
se (kx , v)

=
v2I1(kx , v)bAtr (kx , v)

X
. (10)

In the case where a point force, F(v), is applied at the top plate, in the plane of the
bulkhead, the applied stress is se (x, z, v)=F(v)d(x)d(z), with the origin of the
coordinates coincides with the point force. The thickness of the bulkhead is assumed to
be small compared with its height. Therefore, the responses ẅ1(x=0, v) and ẅ4(x=0, v)
are the inverse Fourier transform of equations (6) and (7) at x=0.

ẅ1(x=0, v)=
F(v)
2p g

a

−a

Id (kx , v) e−ikxx dkx =x=0

or

Ip = ẅ1(x=0, v)/F(v)=
1
2p g

a

−a

Id (kx , v) dkx (11)

and

ẅ4(x=0, v)=
F(v)
2p g

a

−a

Itr (kx , v) e−ikxx dkx =x=0

or

Itr (v)= ẅ4(x=0, v)/F(v)=
1
2p g

a

−a

Itr (kx , v) dkx (12)

The point and transfer accelerance Ip (v) and Itr (v) are given in integral form because
closed form solutions for both equations are not possible. They are evaluated using
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numerical methods. The results for a steel top plate of 10 mm thick, a bulkhead of 10 mm
thick and 3 m high, and a bottom steel plate of 50 mm thick with the bending rigidity in
the z-direction strengthened to an equivalent thickness of 360 mm, are shown in Figure 3.
The responses of an infinite plate of 10 mm thick and of an infinite plate with its neutral
axis offset by 1·5 m are also plotted on the same graph for comparison. The figure shows
that at low frequencies, the two plates are strongly coupled together. They move together
as a single body. As the frequency increases, the two plates start to decouple from each
other. The top plate approaches the behaviour of an infinite plate at frequencies well above
10 kHz.

4. SHEAR BEAM APPROXIMATION

The model in Figure 1 was further simplified by making the following assumptions:

(a) The top and bottom plates are soft in flexure compared with the bulkhead. They
are then treated as a series of independent beam elements of width dx, running
perpendicular to the length of the bulkhead. The beam elements have the flexural
rigidity of a plate of the same thickness.

(b) The bulkhead is treated as a beam with plane shear waves. There is no wave motion
along the height of the bulkhead, i.e. the responses of the top and the bottom plates
are the same.

Consider a single beam element of width dx, as shown in Figure 4. The equation of motion
for the element dx is

12ẇ(x, v)
1x2 +

v2mb

Gb
ẇ(x, v)−

iv
Glb

(Z1(v)+Z2(v))ẇ(x, v)=
−iv
Gl

s(x, v) (13)

where Z1(v) and Z2(v) are the impedance of the infinite beams for the top and bottom
beam elements respectively.

Z1(v)=
2vm1

kB
(1+ i); k4

B =
v2m1

D
;

and

Z2(v)=
2vm2

kBz
(1+ i); k4

Bz =
v2m2

Dz
.

Figure 3. Point and transfer accelerances.
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Figure 4. A shear beam element of width dx.

For a force over the width of the shear beam, s(x)= (F/b)d(x), the response at the
excitation point is given as

ẅ(x=0)=
−iv2F

2Glb$k2
s −

iv
Glb

(Z1(v)+Z2(v))%
1/2

(14)

where ks is the shear wavenumber of the shear beam. The square-root term in equation
(14) is taken such that the imaginary part is positive. Figure 5 compares the shear beam
approximation with the point and transfer accelerance derived in the previous section.

5. EXPERIMENT

An experimental rig was erected to simulate the Deck–Bulkhead–Hull model. It was
made up of two 1·8 m×1·8 m×5 mm perspex sheets, and a perspex strip of size
1·8 m×305 mm×5 mm. The strip was glued to the two sheets forming an I-section
structure. The whole rig was then rested on its end on a layer of foam. An electro-magnetic

Figure 5. Shear beam approximation.
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Figure 6. Measured point accelerance.

shaker with a force transducer was placed at the centre of one of the two perspex sheets.
Two accelerometers were attached to the rig. One was placed adjacent to the force
transducer. Another was placed at the centre of the other perspex sheet directly in line with
the shaker. The force and the accelerations were measured simultaneously when a rapid
swept sine excitation signal was fed to the shaker. The point and transfer accelerances, were
calculated by taking the average of a number of excitations. Figures 6 and 7 show the
measured point and transfer accelerances (accelerations/force). The measurements exhibit
resonant behaviour even at frequencies below 100 Hz. This is because the experimental rig
was made of finite perspex sheets. The resonances at low frequencies were the flexural
resonances of the perspex sheets, with wave motions perpendicular to the bulkhead. The
bulkhead moves more or less in phase along its length. At high frequencies, the resonances
were a combination of flexural resonances of the perspex sheets and the resonances of the
shear and dilatational waves of the perspex strip. Figure 6(a) shows that the modulus of
the measured point accelerance has a similar trend to that of the theory. At frequencies
below 400 Hz, the theoretical prediction represented the mean line of the measured results.
At higher frequencies, the measured accelerance was lower than the theoretical values. This
discrepancy was due to the fact that the measured result was not exactly the point
accelerance since the accelerometer was placed adjacent to a force transducer, the distance
between the axes of the accelerometer and force transducer was about 20 mm. The
magnitude and phase predictions of the response at a point 20 mm from the excitation
point were calculated and plotted in Figures 6(a) and 6(b). They showed good agreements
with the measurements over the whole frequency range.
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Figure 7. Measured transfer accelerance.

Figure 7 shows the transfer accelerance between the acceleration at the centre of the
other perspex sheet directly in line with the excitation point. The measured accelerance
agreed with the theoretical prediction, taking into account the finite nature of the rig.

6. DISCUSSION

A model of two infinite plates connected by a single infinite strip was used to represent
the deck of a ship supported to the hull by a bulkhead. The point and transfer accelerances
were derived. They showed that the top and bottom plates move anti-symmetrically with
respect to the natural axis, along the junctures, at low frequencies. At high frequencies,
the two plates decoupled. The behaviour of the top plate tends towards a single infinite
plate. The response of the bottom plate at the intersection with the bulkhead becomes
dominated by the shear wave motion of the bulkhead once decoupled. The first resonance
due to the existence of a standing shear wave across the height of the bulkhead can be
treated as the decoupling frequency.

At low frequencies, before decoupling, the whole model can be simplified further by
treating it as a beam only with plane shear waves coupled with a series of independent
flexural beam elements on the top and bottom of the beam.

The theoretical prediction agreed with experimental measurements obtained from a
perspex model in the laboratory. The model was also found to be a good representation
when compared with some actual measurements taken from a vessel in dry dock.

The derivation of the point and transfer accelerances presented in this paper allows the
modelling of structures made up of subsystems with line connections.
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APPENDIX A BLOCK APPARENT MASS OF AN INFINITE STRIP

Consider a two dimensional element of size dx dy with a mass per unit area m as shown
in Figure A1. The two independent wave equations are [5]

92o=
1
c2

1

12o

1t2 (A1)

92c=
1
c2

2

12c

1t2 (A2)

with c2
1 = (l+2m)/m and c2

2 = m/m, the dilatational and rotational wave speeds. l and m

are the Lamé constants.
Fourier transforming (A1) and (A2) into the frequency domain gives

92o(v)+ k2
1o(v)=0 (A3)

92c(v)+ k2
2c(v)=0 (A4)

with k1 =v/c1 and k2 =v/c2, the dilatational and rotational wavenumbers respectively.
Fourier transforming (A3) and (A4) into the wavenumber domain, kx , gives

d2

dy2 o(kx , v)− (k2
x − k2

1 )o(kx , v)=0 (A5)

Figure A1. A two-dimensional element of size dx dy.
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d2

dy2 c(kx , v)− (k2
x − k2

2 )c(kx , v)=0. (A6)

The solutions for (A5) and (A6) are

o(kx , v)=A1 ekoy +B1 e−koy (A7)

c(kx , v)=A2 ekcy +B2 e−kcy (A8)

with k2
o = k2

x − k2
1 and k2

c = k2
x − k2

2 .
Consider the case when the boundary y=0 is blocked and an excitation wave with

wavenumber kx and displacement amplitude V is applied on the boundary y= l, the
boundary conditions will be

(i) at y=0 u(kx , v)=0; v(kx ,v)=0 (A9)

(ii) at y= l u(kx , v)=0; v(kx , v)=V. (A10)

Applying the boundary conditions to (A7) and (A8), the constants A1, A2, B1 and B2

can then be determined. The stresses at both boundaries y=0 and y= l can be
determined as

sy (kx , v)=y=0 =
m[kck2

x sinh (kol)− k2
cko sinh (kcl)]

D
V� (kx , v) (A11)

sy (kx , v)y= l =
m[kck2

x cosh (kcl) sinh (kol)− kok2
c sinh (kcl) cosh (kol)]

D
V� (kx , v)

(A12)

with

D=2k2
xkokc [cosh (kol) cosh (kcl)−1]− (k2

o k2
c + k4

x ) sinh (kol) sinh (kcl).

APPENDIX B: NOMENCLATURE

b thickness
c1, c2 dilatational and rotational wavespeeds
h1, h2 thicknesses
kx wavenumber in x
k1, k2 dilatational and rotational wavenumbers
l height
m mass per unit area
t time
u, v, w displacements
A apparent mass (i.e. force/acceleration)
D bending rigidity
E Young’s modulus
F force
G shear modulus
I accelerance (i.e. acceleration/force)
Z impedance (i.e. force/velocity)
o dilatation
l, m Lamé constants
n Poisson ratio
s normal stress
t shear stress
c rotation
v angular frequency.


